skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haddar, Houssem"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present an algorithm for the computation of scattering poles for an impenetrable obstacle with Dirichlet or Robin boundary conditions in acoustic scattering. This paper builds upon the previous work of Cakoni et al. (2020) titled ‘A duality between scattering poles and transmission eigenvalues in scattering theory’ (Cakoni et al. 2020 Proc. A. 476, 20200612 (doi:10.1098/rspa.2020.0612)), where the authors developed a conceptually unified approach for characterizing the scattering poles and interior eigenvalues corresponding to a scattering problem. This approach views scattering poles as dual to interior eigenvalues by interchanging the roles of incident and scattered fields. In this framework, both sets are linked to the kernel of the relative scattering operator that maps incident fields to scattered fields. This mapping corresponds to the exterior scattering problem for the interior eigenvalues and the interior scattering problem for scattering poles. Leveraging this dual characterization and inspired by the generalized linear sampling method for computing the interior eigenvalues, we present a novel numerical algorithm for computing scattering poles without relying on an iterative scheme. Preliminary numerical examples showcase the effectiveness of this computational approach. 
    more » « less
  2. We discuss a novel approach for imaging local faults inside an infinite bi-periodic layered medium in ℝ3 using acoustic measurements of scattered fields at the bottom or the top of the layer. The faulted area is represented by compactly supported perturbations with erroneous material properties. Our method reconstructs the support of perturbations without knowing or reconstructing the constitutive material parameters of healthy or faulty bi-period layer; only the size of the period is needed. This approach falls under the class of non-iterative imaging methods, known as the generalized linear sampling method with differential measurements, first introduced in [2] and adapted to periodic layers in [25]. The advantage of applying differential measurements to our inverse problem is that instead of comparing the measured data against measurements due to healthy structures, one makes use of periodicity of the layer where the data operator restricted to single Floquet-Bloch modes plays the role of the one corresponding to healthy material. This leads to a computationally efficient and mathematically rigorous reconstruction algorithm. We present numerical experiments that confirm the viability of the approach for various configurations of defects 
    more » « less
  3. We provide a graduate student accessible survey of the fascinating topic of transmission eigenvalues 
    more » « less
  4. null (Ed.)
    In this paper, we develop a conceptually unified approach for characterizing and determining scattering poles and interior eigenvalues for a given scattering problem. Our approach explores a duality stemming from interchanging the roles of incident and scattered fields in our analysis. Both sets are related to the kernel of the relative scattering operator mapping incident fields to scattered fields, corresponding to the exterior scattering problem for the interior eigenvalues and the interior scattering problem for scattering poles. Our discussion includes the scattering problem for a Dirichlet obstacle where duality is between scattering poles and Dirichlet eigenvalues, and the inhomogeneous scattering problem where the duality is between scattering poles and transmission eigenvalues. Our new characterization of the scattering poles suggests a numerical method for their computation in terms of scattering data for the corresponding interior scattering problem. 
    more » « less